Loading video player...
Welcome back to the Agentic AI Hands-On Bootcamp! ๐ In this session, youโll learn how to use Hugging Face Embeddings in LangChain to convert text into high-dimensional vectors for semantic understanding and retrieval tasks. Weโll cover: What are text embeddings How to use Hugging Face models for embeddings Comparing Hugging Face vs OpenAI embeddings Using embeddings for Retrieval-Augmented Generation (RAG) ๐ GitHub Repository (Code + Notes): ๐ https://github.com/dearnidhi/Agentic-AI-HandsOn-Bootcamp ๐ฉ Connect with me: ๐ LinkedIn: https://www.linkedin.com/in/nidhi-chouhan-544650b4/ ๐ธ Instagram: @dear_nidhi | @codenidhi โ๏ธ Email: nidhiyachouhan12@gmail.com โจ Donโt forget to LIKE ๐, SHARE ๐ข & SUBSCRIBE ๐ for more LangChain, Hugging Face, and AI tutorials! Hugging Face embeddings, LangChain HuggingFace, Agentic AI Bootcamp, LangChain tutorial, Nidhi Chouhan, CodeNidhi, embeddings in NLP, Hugging Face transformers, text embeddings, semantic search, RAG pipeline, vector database, NLP tutorial, AI bootcamp, embedding models, LLM embeddings #HuggingFace #LangChain #Embeddings #AgenticAI #NidhiChouhan #CodeNidhi #AI #MachineLearning #NLP #LLM #TextEmbeddings #RAG #LangChainBootcamp #Python #Transformers