Loading video player...
LangChain Tutorial Series: From Python to GenAI Episode: Text Embeddings with OpenAI In this video, we explore how to transform text into vector representations using OpenAI embeddings — a foundational concept in building powerful Retrieval-Augmented Generation (RAG) and LLM-based applications. You’ll learn: What text embeddings are and why they’re essential How to generate embeddings using OpenAI’s API How embeddings power similarity search and context retrieval in LangChain How this concept fits into your GenAI pipeline Whether you’re a Python developer stepping into AI or a beginner in Generative AI, this tutorial breaks it down with clear, hands-on examples. Watch the full playlist: LangChain Tutorial: From Python to GenAI : https://youtube.com/playlist?list=PLkt9npIo1sXSKgNrdaF6RjlV-69NSsDLZ&si=dpcM71YqE3jiIchL Connect with me on LinkedIn: https://www.linkedin.com/in/punyakeerthi-bl-864382aa/ For collaborations or queries: punya8147@gmail.com 💡 If you found this helpful: ✅ Like the video 💬 Comment your questions or feedback 🔔 Subscribe for more Generative AI & Python tutorials every week #LangChain #OpenAI #Embeddings #TextEmbeddings #GenerativeAI #PythonForAI #LLM #ArtificialIntelligence #MachineLearning #AIEngineer #VectorDatabase #ChromaDB #RAG #RetrievalAugmentedGeneration #OpenAIAPI #AIinPython #LangChainTutorial #DeepLearning #NeuralNetworks #DataScience #AIDevelopment #CodingTutorial #TechEducation #PythonProjects #AIExplained #LearnAI #LLMApps #PunyakeerthiBL #pkaitechworld