
RAG Pipeline: 7 Iterations Explained!
Cyril Imhof
In this video, we’ll explore one of the most important parts of LangChain — Data Ingestion using Document Loaders 🧠 You’ll learn: What is Data Ingestion in LangChain? How to use TextLoader, WebBaseLoader, ArxivLoader, and WikipediaLoader How to fetch data from text files, websites, Arxiv papers, and Wikipedia Step-by-step code demo with explanations 🚀 After this video, you’ll be ready to load and process your own documents for building RAG or AI Chatbot applications! 📌 Code Reference: 👉 LangChain Document Loaders Docs 📌 GitHub Repository (Code + Notes): 👉 https://github.com/dearnidhi/Agentic-AI-HandsOn-Bootcamp 📩 Contact: ✉️ Email: nidhiyachouhan12@gmail.com 💼 LinkedIn: https://www.linkedin.com/in/nidhi-chouhan-544650b4/ 📸 Instagram: @dear_nidhi | @codenidhi ✨ Don’t forget to LIKE 👍, SHARE 📢, and SUBSCRIBE 🔔 for more LangChain, AI & Python tutorials! #codenidhi #nidhichouhan #LangChain #DataIngestion #DocumentLoader #AI #Python #RAG #AIagents #OpenAI #Groq #HuggingFace #TextLoader #WebBaseLoader #ArxivLoader #WikipediaLoader #LangChainForBeginners #AgenticAI #CodeNidhi #NidhiChouhan #AIlearning langchain data ingestion, langchain document loaders, textloader langchain, webbaseloader langchain, arxivloader langchain, wikipedialoader langchain, data ingestion in ai, rag data ingestion, ai data pipeline, langchain tutorial, langchain for beginners, nidhi chouhan, code nidhi, dear nidhi, langchain python tutorial, document loader tutorial, agentic ai hands-on, langchain ai project, rag pipeline tutorial, load documents langchain